

Study Guide For use with pages 152–159

For use with pages 152–159

GOAL

Solve systems of linear equations.

Vocabulary

A system of two linear equations in two variables x and y, also called a linear system, consists of two equations that can be written in the following form:

$$Ax + By = C$$
 and $Dx + Ey = F$

A solution of a system of linear equations in two variables is an ordered pair (x, y) that satisfies each equation.

A system that has at least one solution is consistent.

If a system has no solution, the system is **inconsistent.** The graph of the system is a pair of parallel lines.

A consistent system that has exactly one solution point is independent.

A consistent system that has infinitely many solutions is **dependent**. The graph of the system is lines that coincide.

EXAMPLE 1

Solve a system graphically

Graph the linear system and estimate the solution. Then check the solution algebraically.

$$v + 3x = 5$$

Equation 1

$$y-2x=-5$$

Equation 2

Solution

Begin by graphing both equations, as shown at the right. From the graph, the lines appear to intersect at (2, -1). The solution can be checked algebraically:

Equation 2

$$y + 3x = 5 y - 2x = -5$$

$$(-1) + 3(2) \stackrel{?}{=} 5 -1 - 2(2) \stackrel{?}{=} -5$$

$$-1 + 6 \stackrel{?}{=} 5 -1 - 4 \stackrel{?}{=} -5$$

$$5 = 5 \checkmark -5 = -5 \checkmark$$

The solution is (2, -1).

Exercises for Example 1

Graph the linear system and estimate the solution. Then check the solution algebraically.

 $\begin{array}{c}
4 = -3x + 7 \\
3x + y = 7
\end{array}$

y = 2x - 3

3) 2x + 3y = 53x - 4y = -1

3.2

Study Guide For use with pages 160–167

GOAL

Solve linear systems algebraically.

Vocabulary

To use the **substitution method**, Step 1 is to *solve* one of the equations for one of its variables. Step 2 is to *substitute* the expression from Step 1 into the other equation and solve for the other variable. Step 3 is to *substitute* the value from Step 2 into the revised equation from Step 1 and solve.

To use the **elimination method**, Step 1 is to *multiply* one or both of the equations by a constant to obtain coefficients that differ only in sign for one of the variables. Step 2 is to *add* the revised equations from Step 1 and solve for the remaining variable. Step 3 is to *substitute* the value obtained in Step 2 into either of the original equations and solve for the other variable.

EXAMPLE 1

Sopyright © by McDougal Littell, a division of Houghton Mifflin Company.

Use the substitution method

Solve the system using the substitution method.

$$6x + 3y = 12$$

$$3x + y = 5$$

Solution

STEP 1 Solve Equation 2 for y.

$$y = 5 - 3x$$

STEP 2 Substitute the expression for y into Equation 1 and solve for x.

$$6x + 3(5 - 3x) = 12$$

Substitute
$$5 - 3x$$
 for y .

$$x = 1$$

Solve for
$$x$$
.

STEP 3 Substitute the value of x into Equation 2 and solve for y.

$$3(1) + y = 5$$

Substitute 1 for
$$x$$
.

$$y = 2$$

The solution is (1, 2).

Exercises for Example 1

Solve the system using the substitution method.

1.
$$2x + y = 4$$

 $3x - 5y = 6$

$$3x - 5y = 6$$

$$3x - 5(-2 \times +4) = 6$$

$$3 \times +10 \times -20 = 6$$

$$2. \quad 3x + 6y = 3$$

$$x - 2y = 5$$

$$x = 2y + 5$$

$$3(2y + 5) + 6y = 3$$

$$6y + 15 + 6y = 3$$

$$12y = -12$$

3.
$$2x - y = 6$$

 $-3x + 2y = -8$
 $-3x + 2(2x - 6) = -8$
 $-3x + 4x - 12 = -8$
 $x = 4$
 $y = 2(4) - 6$

Study Guide For use with pages 168–173

GOAL G

Graph systems of linear inequalities.

Vocabulary

The following is an example of a system of linear inequalities in two variables: $x + y \le 6$ and 2x - y > 6.

A solution of a system of inequalities is an ordered pair that is a solution of each inequality in the system.

The graph of a system of inequalities is the graph of all solutions of the system.

EXAMPLE 1

Graph a system of two inequalities

Graph the system of inequalities.

y < x + 2 Inequality 1

 $y \ge -2x$ Inequality 2

Solution

- **STEP 1** Graph each inequality in the system. Shade y < x + 2 and shade $y \ge -2x$.
- **STEP 2** Identify the region that is common to both graphs. It is the region that is shaded darkest.

EXAMPLE 2

Graph a system with no solution

Graph the system of inequalities.

y > x + 2 Inequality 1

 $y \le x + 1$ Inequality 2

Solution

- **STEP 1** Graph each inequality in the system. Shade y > x + 2 and shade $y \le x + 1$.
- STEP 2 Identify the region that is common to both graphs. There is no common region shaded by both inequalities. So, the system has no solution.

LESSON 3.4

Study Guide

For use with pages 177–185

GOAL

Solve systems of equations in three variables.

Vocabulary

A linear equation in three variables x, y, and z is an equation of the form ax + by + cz = d where a, b, and c are not all zero.

An example of a system of three linear equations in three variables:

$$x + 2y + z = 3$$

$$2x + y + z = 4$$

$$x - y - z = 2$$

A solution of a system with three variables is an ordered triple (x, y, z) whose coordinates make each equation true.

EXAMPLE 1

Use the elimination method

Solve the system.

$$2x + 3y - z = 13$$

$$3x + y - 3z = 11$$

$$x-y+z=3$$

STEP 1 Rewrite the system as a linear system in two variables.

$$2x + 3y - z = 13$$

Add 3 times the third equation

$$3x - 3y + 3z = 9$$

to the first equation.

$$5x + 2z = 22$$

New Equation 1

$$3x + y - 3z = 11$$

Add the second and third equations.

$$x - y + z = 3$$

$$4x - 2z = 14$$

New Equation 2

STEP 2 Solve the new linear system for both of its variables.

$$5x + 2z = 22$$

Add new Equation 1 and new Equation 2.

$$4x - 2z = 14$$

$$9x = 36$$

$$x = 4$$

Solve for x.

$$z = 1$$

Substitute into new Equation 1 or 2 to find z.

STEP 3 Substitute x = 4 and z = 1 into an original equation and solve for y.

$$x-y+z=3$$

Write original Equation 3.

$$4 - y + 1 = 3$$

Substitute 4 for x and 1 for z.

$$v = 2$$

Solve for y.

The solution is x = 4, y = 2, and z = 1 or the ordered triple (4, 2, 1).

Study Guide 3.5 Study Guide For use with pages 187–194

GOAL Perform operations with matrices.

Vocabulary

A matrix is a rectangular arrangement of numbers in rows and columns.

The dimensions of a matrix with m rows and n columns are $m \times n$.

The numbers in a matrix are its elements.

Equal matrices have the same dimensions and the elements in corresponding positions are equal.

To perform scalar multiplication, you multiply a matrix by a real number (called a scalar) by multiplying each element in the matrix by the scalar.

EXAMPLE 1 Add and subtract matrices

Perform the indicated operation, if possible.

a.
$$\begin{bmatrix} -9 & 0 \\ 1 & 5 \end{bmatrix} + \begin{bmatrix} 1 & 7 \\ 10 & -2 \end{bmatrix} = \begin{bmatrix} -9+1 & 0+7 \\ -1+10 & 5+(-2) \end{bmatrix} = \begin{bmatrix} -8 & 7 \\ 9 & 3 \end{bmatrix}$$

b.
$$\begin{bmatrix} -8 & -5 \\ 7 & 9 \end{bmatrix} - \begin{bmatrix} 1 & 2 \\ 8 & -2 \end{bmatrix} = \begin{bmatrix} -8 - 1 & 5 - 2 \\ 7 - 8 & 9 - (-2) \end{bmatrix} = \begin{bmatrix} -9 & -7 \\ -1 & 11 \end{bmatrix}$$

Exercises for Example 1

Perform the indicated operation, if possible.

3.
$$\begin{bmatrix} 2 & -1 & 3 \\ 8 & -9 & 6 \end{bmatrix} + \begin{bmatrix} -3 & 1 & -2 \\ 4 & 6 & 7 \end{bmatrix}$$
4. $\begin{bmatrix} 0 & -5 & 8 \\ 3 & -3 & 6 \\ 4 & 7 & -2 \end{bmatrix} + \begin{bmatrix} +4 & -1 & +1 \\ -9 & +5 & -3 \\ -5 & -8 & -1 \end{bmatrix}$

Multiply a matrix by a scalar

EXAMPLE 2

Perform the indicated operation.

$$-3\begin{bmatrix} 0 & 3 \\ -2 & 5 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} -3(0) & -3(3) \\ -3(-2) & -3(5) \\ -3(1) & -3(4) \end{bmatrix} = \begin{bmatrix} 0 & -9 \\ 6 & -15 \\ -3 & -12 \end{bmatrix}$$

Study Guide 3.6 For use with pages 195-202

GOAL Multiply matrices.

EXAMPLE 1

Find the product of two matrices

Find
$$AB$$
 if $A = \begin{bmatrix} 3 & 6 \\ 7 & -1 \end{bmatrix}$ and $B = \begin{bmatrix} 4 & 2 \\ -3 & 8 \end{bmatrix}$.

Because the number of columns in A (two) equals the number of rows in B (two), the product AB is defined and is a 2×2 matrix.

STEP 1 Multiply the numbers in the first row of A by the numbers in the first column of B, add the products, and put the result in the first row, first column of AB.

$$\begin{bmatrix} 3 & 6 \\ 7 & -1 \end{bmatrix} \begin{bmatrix} 4 & 2 \\ -3 & 8 \end{bmatrix} = \begin{bmatrix} 3(4) + 6(-3) \\ 4 & 2 \end{bmatrix}$$

STEP 2 Multiply the numbers in the first row of A by the numbers in the second column of B, add the products, and put the result in the first row, second

$$\begin{bmatrix} 3 & 6 \\ 7 & -1 \end{bmatrix} \begin{bmatrix} 4 & 2 \\ -3 & 8 \end{bmatrix} = \begin{bmatrix} 3(4) + 6(-3) & 3(2) + 6(8) \end{bmatrix}$$

STEP 3 Multiply the numbers in the second row of A by the numbers in the first column of B, add the products, and put the result in the second row, first

$$\begin{bmatrix} 3 & 6 \\ 7 & -1 \end{bmatrix} \begin{bmatrix} 4 & 2 \\ -3 & 8 \end{bmatrix} = \begin{bmatrix} 3(4) + 6(-3) & 3(2) + 6(8) \\ 7(4) + (-1)(-3) & 3(2) + 6(8) \end{bmatrix}$$

STEP 4 Multiply the numbers in the second row of A by the numbers in the second column of B, add the products, and put the result in the second row, second

$$\begin{bmatrix} 3 & 6 \\ 7 & -1 \end{bmatrix} \begin{bmatrix} 4 & 2 \\ -3 & 8 \end{bmatrix} = \begin{bmatrix} 3(4) + 6(-3) & 3(2) + 6(8) \\ 7(4) + (-1)(-3) & 7(2) + (-1)(8) \end{bmatrix}$$

STEP 5 Simplify the product matrix.

$$\begin{bmatrix} 3(4) + 6(-3) & 3(2) + 6(8) \\ 7(4) + (-1)(-3) & 7(2) + (-1)(8) \end{bmatrix} = \begin{bmatrix} -6 & 54 \\ 31 & 6 \end{bmatrix}$$

Exercises for Example 1

Find the product. If it is not defined, state the reason.

$$\begin{array}{c|c}
2 \times 1 & 1 \times 2 \\
\hline
1 & 4 \\
-2 & 1 \times 3
\end{array}$$

74

Study Guide

For use with pages 210–217

GOAL

Solve linear systems using inverse matrices.

Vocabulary

The $n \times n$ identity matrix is a matrix with 1's on the main diagonal and 0's elsewhere. If A is any $n \times n$ matrix and I is the $n \times n$ identity matrix, then AI = A and IA = A.

Two $n \times n$ matrices A and B are inverses of each other if their product (in both orders) is the $n \times n$ identity matrix.

In the matrix equation AX = B, matrix A is the coefficient matrix, X is the matrix of variables, and B is the matrix of constants.

EXAMPLE 1

Solve a matrix equation

Solve the matrix equation AX = B for the 2 \times 2 matrix X.

$$\begin{bmatrix}
A & B \\
1 & 1 \\
6 & 7
\end{bmatrix} X = \begin{bmatrix}
2 & 3 \\
1 & 4
\end{bmatrix}$$

Begin by finding the inverse of A.

$$A^{-1} = \frac{1}{7 - 6} \begin{bmatrix} 7 & -1 \\ -6 & 1 \end{bmatrix} = \begin{bmatrix} 7 & -1 \\ -6 & 1 \end{bmatrix}$$

To solve the equation for X, multiply both sides of the equation by A^{-1} on the left.

$$\begin{bmatrix} 7 & -1 \\ -6 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 6 & 7 \end{bmatrix} X = \begin{bmatrix} 7 & -1 \\ -6 & 1 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix} \qquad A^{-1}AX = A^{-1}B$$

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} X = \begin{bmatrix} 13 & 17 \\ -11 & -14 \end{bmatrix} \qquad IX = A^{-1}B$$

$$X = \begin{bmatrix} 13 & 17 \\ -11 & -14 \end{bmatrix} \qquad X = A^{-1}B$$

Exercises for Example 1

Solve the matrix equation.

1
$$\begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix} X = \begin{bmatrix} 6 & 4 \\ 2 & 8 \end{bmatrix}$$
 2
$$\begin{bmatrix} 1 & 1 \\ 3 & 4 \end{bmatrix} X = \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix}$$
 3
$$\begin{bmatrix} 9 & 4 \\ 2 & 1 \end{bmatrix} X = \begin{bmatrix} 0 & -1 \\ 3 & 2 \end{bmatrix}$$

$$X = \begin{bmatrix} 1 & 0 & 4 \\ -1 & 0 & 0 \end{bmatrix}$$

$$X = \begin{bmatrix} 3 & 5 \\ -2 & -3 \end{bmatrix}$$

$$X = \begin{bmatrix} -12 & -9 \\ 27 & 20 \end{bmatrix}$$