4.1

Study Guide continued For use with pages 236-244

Exercises for Examples 1 and 2

Graph the function. Label the vertex and axis of symmetry.

1.
$$y = 6x^2$$

2.
$$y = -x^2 + 1$$

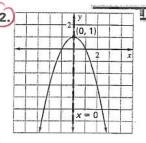
3.
$$y = -4x^2 - 1$$

4.
$$y = x^2 + 4x + 4$$
 5. $y = 2x^2 - 8x + 6$ **6.** $y = x^2 - 4x - 4$

5.
$$y = 2x^2 - 8x + 6$$

6.
$$y = x^2 - 4x - 4$$

Find the minimum or maximum value

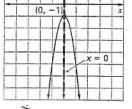


Tell whether the function $y = -2x^2 + 8x - 7$ has a minimum value or a maximum value. Find the minimum or maximum value.

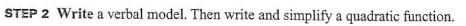
Because a < 0, the function has a maximum value. The coordinates of the vertex are $x = -\frac{b}{2a} = -\frac{8}{(-4)} = 2$ and $y = -2(2)^2 + 8(2) - 7 = 1$. The maximum value is y = 1.

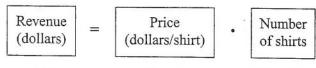
Find the maximum value of a quadratic function

Revenue A street vendor sells about 20 shirts each day when she charges \$8 per shirt. If she decreases the price by \$1, she sells about 10 more shirts each day. How can she maximize daily revenue?



STEP 1 Define the variables. Let x represent the price reduction and R(x) represent the daily revenue.





$$R(x) = (8-x) \cdot (20 + 10x)$$

$$R(x) = 160 - 20x + 80x - 10x^{2}$$

$$R(x) = -10x^{2} + 60x + 160$$

STEP 3 Find the coordinates (x, R(x)) of the vertex.

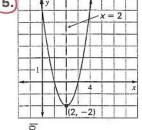
$$x = -\frac{b}{2a} = -\frac{60}{2(-10)} = 3$$

Find x-coordinate.

$$R(3) = -10(3)^2 + 60(3) + 160 = 250$$

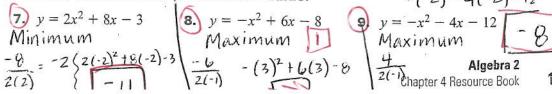
Evaluate R(3).

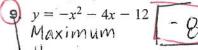
The vertex is (3, 250). The vendor should reduce the price by \$3 to maximize daily revenue.



Exercises for Examples 3 and 4

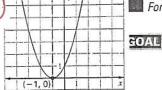
Tell whether the function has a *minimum value* or a *maximum value*. Then find the minimum or maximum value. -1-2)2-4(-2)-12





13

Study Guide For use with pages 245–251



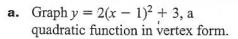
Graph quadratic equations in vertex form or intercept form.

Vocabulary

The vertex form of a quadratic equation is given by $y = a(x - h)^2 + k$.

The intercept form of a quadratic equation is given by y = a(x - p)(x - q).

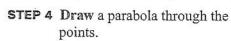
Graph a quadratic function

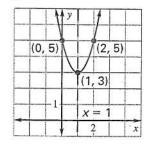


STEP 1 Identify
$$a = 2$$
, $h = 1$, and $k = 3$. Because $a > 0$, the parabola opens up.

STEP 2 Plot the vertex
$$(1, 3)$$
 and draw $x = 1$, the axis of symmetry.

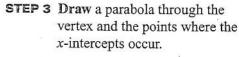
STEP 3 Evaluate y for
$$x = 0$$
 and $x = 2$.
Plot the points $(0, 5)$ and $(2, 5)$.

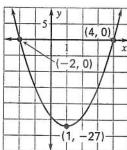




- **b.** Graph y = 3(x 4)(x + 2), a quadratic function in intercept form.
- **STEP 1** Identify the *x*-intercepts. Because p = 4 and q = -2, (4, 0) and (-2, 0) are the *x*-intercepts.
- **STEP 2 Find** the coordinates of the vertex. $x = \frac{p+q}{2} = \frac{4+(-2)}{2} = \frac{2}{2} = 1$ y = 3(1-4)(1+2) = -27

The vertex is (1, -27).





Exercises for Example 1

Graph the function. Label the vertex, axis of symmetry, and the x-intercepts.

$$y = (x+1)^2$$

$$y = 2(x+2)^2$$

$$5. y = 2(x-2)(x-3)$$

$$2. y = -(x-1)^2$$

$$(4.) y = (x+1)(x-1)$$

6.
$$y = -(x+4)(x+2)$$

LESSON

Study Guide continued For use with pages 245-251

$$y = -1 \left[(x-1)(x-1) \right]$$

= -1 \(\times^2 - 2x + 1 \)

EXAMPLE 2

Use a quadratic model in vertex form

Bridges A bridge is designed with cables that connect two towers that rise above a roadway. Each cable is modeled by

$$y = \frac{(x - 1600)^2}{6800} + 30.$$

Find the distance between the towers.

Solution

The vertex of the parabola is (1600, 30). The cable's lowest point is 1600 feet from either tower. The distance between the towers is d = 2(1600) = 3200 feet.

Exercise for Example 2

7. Rework Example 2 where
$$y = \frac{(x - 1500)^2}{6500} + 28$$
.

(1500, 28); lowest pt 1500 ft from either tower

Change quadratic functions to standard form distance betwee

Write the quadratic function in standard form.

a.
$$y = 3(x - 1)(x + 2)$$

b.
$$y = (x+1)^2 + 2$$

Solution

a.
$$y = 3(x - 1)(x + 2)$$

$$= 3(x^2 + 2x - x - 2)$$

$$=3(x^2+x-2)$$

$$= 3x^2 + 3x - 6$$

b.
$$y = (x+1)^2 + 2$$

$$= (x+1)(x+1) + 2$$

$$= (x^2 + x + x + 1) + 2$$

$$= x^2 + 2x + 3$$

Rewrite
$$(x + 1)^2$$
.

Exercises for Example 3

Write the quadratic function in standard form.

$$y = (x+1)_{y=1}^{2} x^{2} + 2 x + 1$$

10.
$$y = 2(x + 2)^2 y = Zx^2 + 8x + 8$$

10.
$$y = 2(x + 2)^2 y = Z \times^2 + 8 \times + 8$$

11. $y = (x + 1)(x - 1) \quad y = x^2 - 1$
12. $y = 2(x - 2)(x - 3) \quad y = -(x + 3)(x + 2)$
 $y = 2x^2 - 10 \times + 12$
13. $y = -(x + 3)(x + 2)$
 $y = -1x^2 - 5 \times -16$

$$9.) y = -(x-1)^2 y = -1x^2 + 2x - 1$$

$$y = (x+1)(x-1) \quad y = x^2 - 1$$

13.
$$y = -(x+3)(x+2)$$

 $y = -1x^2 - 5x - 1$

2

Study Guide For use with pages 252-258

GOAL Solve quadratic equations.

Vocabulary

A monomial is an expression that is a number, a variable, or the product of a number and one or more variables.

A binomial is the sum of two monomials.

A trinomial is the sum of three monomials.

A quadratic equation in one variable can be written as $ax^2 + bx + c = 0$ where $a \neq 0$.

A solution of a quadratic equation is called the root of the equation.

Because a function's value is zero when x = p and x = q, the numbers p and q are also called the zeros of the function.

Factor trinomials of the form $x^2 + bx + c$ **EXAMPLE 1**

Factor the expression $w^2 - 2w - 15$.

Solution

Copyright © by McDougal Littell, a division of Houghton Mifflin Company

You want $w^2 - 2w - 15 = (w + m)(w + n)$ where mn = -15 and m + n = -2.

Factors of -15: m, n	-1, 15	1, -15	-3, 5	3, -5
Sum of factors: m + n	14	-14	2	-2

Notice that m = 3 and n = -5. So, $w^2 - 2w - 15 = (w + 3)(w - 5)$.

Factor with special patterns **EXAMPLE 2**

Factor the expression.

a.
$$g - 20g + 100 = g^2 - 2(g)(10) + 10^2$$

= $(g - 10)^2$

Perfect square trinomial

b.
$$z^2 - 64 = z^2 - 8^2$$

Difference of two squares

$$= (z+8)(z-8)$$

Exercises for Examples 1 and 2

Factor the expression. If the expression cannot be factored, say so.

1.
$$y^2 + 3y - 4(y+14)(y-1)2$$
. $j^2 - 11j + 30(j-1)(j-5)$. $s^2 + s - 5$ Not factorable prime

(d+7)
$$(d+7)$$

(a)
$$d^2 + 14d + 49$$
 (b) $25a^2 - k^2$ (5a+k) (5a-k)

LESSON 4.3

Study Guide continued For use with pages 252-258

Find the roots of an equation **EXAMPLE 3**

Find the roots of $x^2 - 13x + 42 = 0$.

$$x^2 - 13x + 42 = 0$$

$$(x-6)(x-7)=0$$

$$(x-6)(x-7)=0$$

$$x - 6 = 0 \text{ or } x - 7 = 0$$

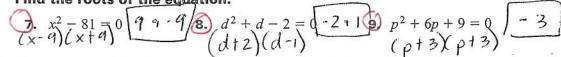
$$x = 6 \text{ or } x = 7$$

Solve for
$$x$$
.

The roots are 6 and 7.

Exercises for Example 3

Find the roots of the equation.



EXAMPLE 4

Use a quadratic equation as a model

Gardening A rectangular garden measures 10 feet by 15 feet. By adding x feet to the width and x feet to the length, the area is doubled. Find the new dimensions of 2(4)(6)=(4+x)(6+x) the garden.

$$48 = 24 + 10x + x^2$$

 $0 = x^2 + 10x - 24$

$$0 = (x+12)(x-2)$$

$$2(10)(15) = (10 + x)$$
$$300 = 150 + 25x + x^2$$

$$(15 + x)$$
 Multiply using FOIL.

$$0 = x^2 + 25x - 150$$

Write in standard form.

$$0 = (x + 30)(x - 5)$$

increased by 2 feet x + 30 = 0 or x - 5 = 0

or
$$x - 5 = 0$$

Factor. Zero product property

$$0 = 0$$
 or $x - 5 = 0$

(lofeet x & feet)

Solve for x.

Reject the negative value. The garden's width and length should each be increased by 5 feet. The new dimensions are 15 feet by 20 feet.

EXAMPLE 5

Find the zeros of quadratic functions

Find the zeros of $y = x^2 + 3x - 28$ by rewriting the function in intercept form.

$$y = x^2 + 3x - 28$$

Write original function.

Copyright © by McDougal Littell, a division of Houghton Mifflin Company.

$$=(x+7)(x-4)$$

Factor.

The zeros of the function are -7 and 4.

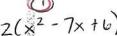
Exercises for Examples 4 and 5

10.) Rework Example 4 where a rectangular garden measures 4 feet by 6 feet.

Find the zeros of $y = x^2 - 100$ by rewriting the function in intercept form.

Study Guide

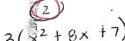
For use with pages 259-265



Use factoring to solve equations of the form $ax^2 + bx + c = 0$.

2(x² - 7x + 6) EXAMPLE 1

Factor $ax^2 + bx + c$ where c < 0



Factor $2x^2 - x - 3$.

You want $2x^2 - x - 3 = (kx + m)(\ell x + n)$ where k and ℓ are factors of 2 and m and n are factors of -3. Because mn < 0, m and n have opposite signs.

- 1	
1	(2)
- E 8-7	
	7 7 1.12
6	x2-7x+12)
3	
- 1	
	(4)
55	
4	1
47	(x2+x-6)

K, I	2, 1	2, 1	2, 1	2, 1	
m, n	3, -1	-1,3	-3, 1	1, -3	
$(kx + m)(\ell x + n)$	(2x+3)(x-1)	(2x-1)(x+3)	(2x-3)(x+1)	(2x+1)(x-3)	
$ax^2 + bx + c$	$2x^2 + x - 3$	$2x^2 + 5x - 3$	$2x^2 - x - 3$	$2x^2 - 5x - 3$	

5 (x2-4x-5) EXAMPLE 2

Copyright © by McDougal Littell, a division of Houghton Mifflin Company

Factor with special patterns and monomials

Factor the expression.

a.
$$6t^2 - 24 = 6(t^2 - 4)$$

= $6(t + 2)(t - 2)$

b.
$$3m^2 - 18m + 27 = 3(m^2 - 6m + 9)$$

= $3(m - 3)^2$

The correct factorization is (2x - 3)(x + 1).

Factor out monomial.

Difference of two squares

Factor out monomial.

Perfect square trinomial

EXAMPLE 3

Solve a quadratic equation

$$4s^{2} + 11s + 8 = 3s + 4$$

$$4s^{2} + 8s + 4 = 0$$

$$s^{2} + 2s + 1 = 0$$

$$(s + 1)^{2} = 0$$

$$s + 1 = 0$$

$$s = -1$$

Original equation

Write in standard form.

Divide each side by 4.

Factor.

Zero product property

Solve for s.

Exercises for Examples 1, 2, and 3

Factor the expression. If the expression cannot be factored, say so.

1.
$$2x^2 - 14x + 12$$

 $2(x-b)(x-1)$
4. $4x^2 + 4x - 24$
 $4(x+3)(x-2)$

$$\begin{array}{c} 3x^2 + 24x + 21 \\ 3(x+7)(x+1) \\ \hline 5x^2 - 20x - 25 \end{array}$$

$$6x^{2} - 42x + 72$$

$$6(x-3)(x-4)$$

$$3x^{2} - 12x - 36$$

$$3(x-6)(x+2)$$

Solve the equation.

7.
$$25x^2 - 9 = 0$$

 $x = \pm \frac{3}{5}$
 $x = \pm \frac{3}{5}$

8.
$$3x^2 - 12x + 12 = 0$$

 $3(x^2 - 4x + 4) = 0$
 $3(x-2)(x-2) = 0$

9.
$$5x^2 - 15x - 20 = 0$$

 $5(x^2 - 3x - 7) = 0$
 $5(x^2 - 3x - 7) = 0$
 $5(x - 4)(x + 1) = 0$
Chapter 4 Resource Book

LESSON 4.4

Study Guide continued For use with pages 259-265

EXAMPLE 4

Use a quadratic equation as a model

Paintings The area of a painting is 24 square inches and the length is 5 inches more than the width. Find the length of the painting.

Solution

Write a verbal model. Let x represent the width and write an equation.

Reject the negative value, x = -8. The length is x = 3 + 5 inches or 8 inches.

EXAMPLE 5

Solve a multi-step problem

weekly revenue.

Bicycles A bicycle shop sells about 18 bikes per week when it charges \$100 per bike. For each increase of \$10, the shop sells 3 less bikes per week. How much should the 24 = x · (x+2) shop charge to maximize sales? **STEP 1** Define the variables. Let x represent the price increase and R(x) represent the

- 24 = x2 + 2 x $0 = x^2 + 2x - 24$ = (x+12) (x-10) 10
- STEP 2 Write a verbal model. Then write and simplify a quadratic equation.

Weekly sales (dollars) = Number of bikes sold (bikes) . Price of bike (dollars/bike)
$$R(x) = (18 - 3x) \cdot (100 + 10x)$$

$$R(x) = -30(x - 6)(x + 10)$$

- **STEP 3** Identify the zeros and find their average. The zeros are 6 and -10. The $R(x) = (10^{10} - 9x)(100 + 10x)$ average of the zeros is -2. To maximize revenue, the shop should charge 100 + 10(-2) = \$80. = -9(x-z)ic(x+10) STEP 4 Find the maximum weekly revenue.
 - = -90 (x-2) (x+10)
- R(-2) = -30(-2 6)(-2 + 10) = \$1920.

The shop should charge \$80 per bike to maximize weekly revenue.

The maximum weekly revenue is \$1920.

Exercises for Examples 4 and 5

- Rework Example 4 where the length is 2 inches more than the width.

Rework Example 5 where for each increase of \$10, the shop sells 9 less bikes per week. To maximize revenue, charge \$60 per bike

50

Chapter 4 Resource Book

Maximum revenue is \$3240.

4.5 Study Guide For use with pages 266–271

STATES OF THE PERSON OF THE PE

3 opyright © by McDougal Littell, a division of Houghton Mifflin Company.

GOAL Solve quadratic equations by finding square roots.

Vocabulary

A number r is a square root of a number s if $r^2 = s$.

The expression \sqrt{s} is called a **radical**. The symbol $\sqrt{\ }$ is a radical sign and the number s beneath the radical sign is the **radicand** of the expression.

To rationalize a denominator \sqrt{b} of a fraction, multiply the numerator and denominator by \sqrt{b} . To rationalize a denominator $a+\sqrt{b}$ of a fraction, multiply the numerator and denominator by $a-\sqrt{b}$, and to rationalize a denominator $a-\sqrt{b}$ of a fraction, multiply the numerator and denominator by $a+\sqrt{b}$.

The expressions $a + \sqrt{b}$ and $a - \sqrt{b}$ are called **conjugates.**

EXAMPLE 1 Use properties of square roots

Simplify the expression.

a.
$$\sqrt{8} \cdot \sqrt{6} = \sqrt{48} = \sqrt{16} \cdot \sqrt{3} = 4\sqrt{3}$$

b.
$$\sqrt{\frac{5}{36}} = \frac{\sqrt{5}}{\sqrt{36}} = \frac{\sqrt{5}}{6}$$

EXAMPLEZ Rationalize denominators of fractions

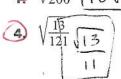
Simplify the expression.

a.
$$\sqrt{\frac{7}{3}} = \frac{\sqrt{7}}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{\sqrt{21}}{3}$$

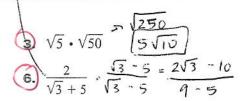
b.
$$\frac{5}{3 - \sqrt{7}} = \frac{5}{3 - \sqrt{7}} \cdot \frac{3 + \sqrt{7}}{3 + \sqrt{7}}$$
$$= \frac{15 + 5\sqrt{7}}{9 + 3\sqrt{7} - 3\sqrt{7} - 7}$$
$$= \frac{15 + 5\sqrt{7}}{2}$$

Exercises for Examples 1 and 2

Simplify the expression.



(2.)
$$\sqrt{147}$$
 (5.) $\sqrt{\frac{7}{5}} \cdot \sqrt{\frac{5}{5}} = \sqrt{\frac{35}{5}}$



5!