Study Guide LESSON For use with pages 426-434

Graph and solve systems of linear equations. GOAL

Vocabulary

A system of linear equations, or simply a linear system, consists of two or more linear equations in the same variables.

A solution of a system of linear equations in two variables is an ordered pair that satisfies each equation in the system.

EXAMPLE 1

Check the intersection point

Use the graph to solve the system. Then check your solution algebraically.

$$2x + y = 4$$

$$3x - 5y = 6$$

Solution

The lines appear to intersect at the point (2, 0).

Substitute 2 for x and 0 for y in each equation. CHECK

Equation 1

$$2x + y = 4$$

 $2(2) + 0 \stackrel{?}{=} 4$
 $4 + 0 \stackrel{?}{=} 4$
 $4 = 4 \checkmark$
Equation 2
 $3x - 5y = 6$
 $3(2) - 5(0) \stackrel{?}{=} 6$
 $6 - 0 \stackrel{?}{=} 6$
 $6 = 6 \checkmark$

Because the ordered pair (2, 0) is a solution of each equation, it is a solution of the system.

EXAMPLE 2

Use the graph-and-check method

Solve the linear system:

$$x - 3y = 2$$

$$-5x + y = 4$$

STEP 1 Graph both equations.

LESSON 7.1

Study Guide continued For use with pages 426–434

D 1=3x+4

Sopyright © by McDougal Littell, a division of Houghton Mifflin

STEP 3 Check whether (-1, -1) is a solution by substituting -1 for x and -1 for y in each of the original equations.

Equation 1

$$x - 3y = 2$$

 $-1 - 3(-1) \stackrel{?}{=} 2$
 $-1 + 3 \stackrel{?}{=} 2$
 $2 = 2 \checkmark$
Equation 2
 $-5x + y = 4$
 $-5(-1) + (-1) \stackrel{?}{=} 4$
 $5 - 1 \stackrel{?}{=} 4$
 $4 = 4 \checkmark$

Because the ordered pair (-1, -1) is a solution of each equation, it is a solution of the system.

EXAMPLE 3

Solve a multi-step problem

Delivery Service The Rosebud Flower Shop has a basic delivery charge of \$5 plus a rate of \$.25 per mile. The Beautiful Bouquets Shop has a basic delivery charge of \$7 plus a rate of \$.20 per mile. Determine the number of miles a delivery must be for the charges to be equal.

Solution

STEP 1 Write a linear system. Let x be the number of miles driven and y be the total cost of the delivery.

$$y = 5 + 0.25x$$

Equation for Rosebud Flower Shop

$$x = 7 + 0.20x$$

Equation for Beautiful Bouquets Shop

STEP 3 Estimate the point of intersection. The two lines appear to intersect at (40, 15).

STEP 4 Check whether (40, 15) is a solution.

Equation 1

$$y = 5 + 0.25x$$
 Equation 2
 $y = 7 + 0.20x$
 $15 \stackrel{?}{=} 5 + 0.25(40)$ $15 \stackrel{?}{=} 7 + 0.20(40)$
 $15 = 15 \checkmark$ $15 = 15 \checkmark$

Exercises for Examples 1, 2, and 3

Solve the linear system by graphing. remember graphing is the jeast accurate method

In Example 3, suppose Rosebud Flower Shop increases its basic charge to \$10, and Beautiful Bouquets raises its basic charge to \$13. Determine when the costs will be equal.

Copyright © by McDougal Littell, a division of Houghton Mifflin Company:

7.2 Study Guide For use with pages 435-441

GOAL Solve systems of linear equations by substitution.

EXAMPLE 1

Use the substitution method

Solve the linear system: 2x + y = 1 Equation 1

$$x + 2y = 5$$
 Equation 2

Solution

STEP 1 Solve Equation 1 for y.

$$2x + y = 1$$

Write original Equation 1.

$$\dot{y} = -2x + 1$$

Subtract 2x from each side.

STEP 2 Substitute -2x + 1 for y in Equation 2 and solve for x.

$$x + 2y = 5$$

Write Equation 2.

$$x + 2(-2x + 1) = 5$$

Substitute -2x + 1 for y.

$$x - 4x + 2 = 5$$

Distributive property

$$-3x + 2 = 5$$

Simplify.

$$-3x = 3$$

Subtract 2 from each side.

$$x = -1$$

Divide each side by -3.

STEP 3 Substitute -1 for x in the original Equation 1 to find the value of y.

$$2x + y = 1$$

Write original Equation 1.

$$2(-1) + y = 1$$

Substitute -1 for x.

$$(-1)^{-1}y^{-1}$$

$$-2+y=1$$

Simplify.

$$y = 3$$

Solve for y.

The solution is
$$(-1, 3)$$
.

CHECK Substitute -1 for x and 3 for y in each of the original equations.

Equation 1

$$2x + y = 1$$

 $2(-1) + 3 \stackrel{?}{=} 1$
 $1 = 1 \checkmark$
Equation 2
 $x + 2y = 5$
 $-1 + 2(3) \stackrel{?}{=} 5$
 $5 = 5 \checkmark$

Name

Date

LESSON

Study Guide continued For use with pages 435-441

Use the substitution method **EXAMPLE 2**

Solve the linear system: 2x + 5y = 5

Equation 1

$$x - 4v = 9$$

Equation 2

Solution

STEP 1 Solve Equation 2 for x.

$$x - 4y = 9$$

Write original Equation 2.

$$x = 4y + 9$$

Revised Equation 2

STEP 2 Substitute 4y + 9 for x in Equation 1 and solve for y.

$$2x + 5y = 5$$

Write Equation 1.

$$2(4y + 9) + 5y = 5$$

Substitute 4y + 9 for x.

$$8y + 18 + 5y = 5$$

Distributive property

$$13y + 18 = 5$$

Simplify.

$$13y = -13$$

Subtract 18 from each side.

$$\dot{v} = -1$$

Divide each side by 13.

STEP 3 Substitute -1 for y in the revised Equation 2 to find the value of x.

X=-3(-4)-10

3

$$x = 4y + 9$$

Revised Equation 2
$$\mathcal{L}$$

Substitute -1 for y .

$$x = 4(-1) + 9$$
$$x = 5$$

4x-5(-3x+8)=15

The solution is (5, -1).

Substitute 5 for x and -1 for y in each equation. 4x + 34x - 4 = 15CHECK

Equation 1
$$2x + 5y = 5$$

$$x - 4y = 9$$

$$2(5) + 5(-1) \stackrel{?}{=} 5$$
 $5 - 4(-1) \stackrel{?}{=}$

Exercises for Examples 1 and 2

Solve the linear system using the substitution method.

1)
$$x + 3y = -10$$

 $7x - 5y = 24$

(3)
$$6x - 7y = 22$$

 $x - 4y = -2$

4.
$$6x + y = 26$$

5x - 2y = -1

5.
$$x + 3y = 11$$

$$5x + 6y = 1$$

6.
$$\frac{3}{2}x + y = 8$$
 (4) $4x - \frac{1}{2}y = 15$

Name

Date

LESSON

Study Guide

For use with pages 443-450

Solve linear systems by elimination.

EXAMPLE 1

Use addition to eliminate a variable

Solve the linear system:
$$2x + 4y = 2$$

Equation 1

$$4x - 4y = 16$$
 Equation 2

Solution

$$2x + 4y = 2$$

$$r=3$$

STEP 3 Substitute 3 for x in either equation and solve for y.

$$2x + 4y = 2$$

Write Equation 1.

$$2(3) + 4y = 2$$

Substitute 3 for x.

$$y' = -1$$

Solve for y.

The solution is (3, -1).

Substitute 3 for x and -1 for y in each equation.

$$2x + 4y = 2$$

$$4x - 4y = 16$$

$$4(3) - 4(-1) \stackrel{?}{=} 16$$

$$2(3) + 4(-1) \stackrel{?}{=} 2$$
$$2 = 2 \checkmark$$

EXAMPLE 2

Use subtraction to eliminate a variable

Solve the linear system:
$$7x + 5y = 18$$

Equation 1

$$7x - 3y = 34$$
 Equation 2

Solution

STEP 1 Subtract the equations to eliminate one variable.

$$7x + 5y = 18$$
$$7x - 3y = 34$$

STEP 2 Solve for y.

$$8y = -16$$
$$y = -2$$

STEP 3 Substitute
$$-2$$
 for y in either equation and solve for x.

$$7x + 5y = 18$$

Write Equation 1.

$$7x + 5(-2) = 18$$

Substitute -2 for y.

$$x = 4$$

Solve for x.

The solution is (4, -2).

Study Guide continued For use with pages 443–450

EXAMPLES Arrange like terms

Solve the linear system: 6x - 4y = 10 Equation 1

$$13y = 6x + 8 Equation 2$$

Solution

STEP 1 Rewrite Equation 1 so that the like terms are arranged in columns.

$$6x - 4y = 10$$

 $13y = 6x + 8$
STEP 2 Add the equations.
STEP 3 Solve for y.
 $6x - 4y = 10$
 $-6x + 13y = 8$
 $9y = 18$
 $y = 2$

STEP 4 Substitute 2 for y in either equation and solve for x.

$$6x + 4y = 10$$
 Write Equation 1.
 $6x - 4(2) = 10$ Substitute 2 for y.
 $x = 3$ Solve for x.

The solution is (3, 2).

Exercises for Examples 1, 2, and 3

Simplify the linear system.

$$\underbrace{\text{1.}}_{7x-8y=12}^{5x+8y=36} (4,3)$$

$$(3.) \begin{array}{l} 9x - 8y = 7 \\ 9x + 2y = -13 \end{array} (-1) - \lambda$$

(5.)
$$9x + 8y = -30$$

 $9x = 4y + 42$

2.
$$4x + 5y = 8$$

 $-4x - 3y = 0$

4.
$$-4x + 7y = 11$$

 $2x + 7y = 47$

6.
$$5y = 4x + 3$$
 $7x = 36 - 5y$

$$\begin{array}{c}
(5) & (9x + 8y = -30) \\
(4x - 4y = 42) \\
-4x - 8 - 1 = 30
\end{array}$$

$$\begin{array}{c}
-124 = 72 \\
(4 = -6)
\end{array}$$

$$9x+8(-6)=-30$$

 $9x+-48=-30$
 $9x=18$
 $x=2$

Study Guide

For use with pages 451-457

GOAL

Solve linear systems by multiplying first.

EXAMPLE 1

Multiply one equation, then add

Solve the linear system: 3x - 2y = -4Equation 1

$$7x - 4y = -6$$
 Equation 2

Solution

STEP 1 Multiply Equation 1 by -2 so that the coefficients of y are opposites.

$$3x - 2y = -4$$

$$7x - 4y = -6$$

$$7x - 4y = -6$$

$$7x - 4y = -6$$

$$x = 2$$

STEP 2 Add the equations.

STEP 3 Substitute 2 for x in either equation and solve for y.

$$3x - 2y = -4$$
 Write Equation 1.
 $3(2) - 2y = -4$ Substitute 2 for x.
 $y = 5$ Solve for y.

The solution is (2, 5).

Substitute 2 for x and 5 for y in each equation. CHECK

Equation 1

$$3x - 2y = -4$$

 $3(2) - 2(5) \stackrel{?}{=} -4$
 $-4 = -4 \checkmark$
Equation 2
 $7x - 4y = -6$
 $7(2) - 4(5) \stackrel{?}{=} -6$
 $-6 = -6 \checkmark$

Exercises for Example 1

Solve the linear system using elimination.

(3)
$$4x = 7y + 14$$

 $14y = 3x + 7$ (7)

$$(3) - 3(5 \times 13 + 34 - 18)$$

$$7 \times + 84 = 6$$

$$-15 \times 1 - 49 = -54$$

$$-8 \times = -48 \quad 5(6) + 34 = 18$$

$$34 = -12$$

$$34 = -12$$

Copyright © by McDougal Littell, a division of Houghton Mifflin Company.

-3(7)+14y=7 -21 +144=7

Study Guide continued

For use with pages 451-457

EXAMPLE 2

Multiply both equations, then add

Solve the linear system: 5x + 2y = -18

Equation 1

$$7y = 3x + 19$$

Equation 2

Solution

STEP 1 Arrange the equations so that like terms are in columns.

$$5x + 2y = -18$$

Write Equation 1.

$$-3x + 7y = 19$$

Rewrite Equation 2.

STEP 2 Multiply Equation 1 by 3 and Equation 2 by 5 so that the coefficients in each equation are the least common multiple of 5 and 3, or 15.

$$5x + 2y = -18$$

$$15x + 6y = -54$$

$$-3x + 7y = 19$$

$$-15x + 35y = 95$$

$$41y = 41$$

STEP 4 Solve for y.

$$y = 1$$

STEP 5 Substitute 1 for y in either of the original equations and solve for x.

$$5x + 2y = -18$$

Write Equation 1.

$$5x + 2(1) = -18$$

Substitute 1 for y.

$$x = -4$$

Solve for x.

The solution is (-4, 1).

CHECK Substitute -4 for x and 1 for y in each equation.

Equation 1

$$5x + 2y = -18$$

$$7y = 3x + 19$$

$$7(1) \stackrel{?}{=} 3(-4) + 19$$

$$-18 = -18$$

Exercises for Example 2

Solve the linear system using elimination.

(3) (4.) 9x + 5y = 33

12x - 7y = 3

1) - (9x+5y=33) -

36x +-204=-132

9x+5(3)=33

-414=-123 (4=3)

ALTHERN

-4 (

-10x+9y=4 -> -50x+45y=20

58x= 290

Algebra 1

Chapter 7 Resource Book

Study Guide For use with pages 459-465

GOAL Identify

Identify the number of solutions of a linear system.

Vocabulary

A linear system with no solution is called an inconsistent system.

A linear system with infinitely many solutions is called a dependent system.

EXAMPLE 1

A linear system with no solution

Show that the linear system has no solution.

$$-5x + 4y = 16$$

$$5x - 4y = 8$$

Solution

Method 1 Graphing

Graph the linear system.

The lines are parallel because they have the same slope but different y-intercepts. Parallel lines do not intersect, so the system has no solution.

$$-5x + 4y = 16$$

$$5x - 4y = 8$$

$$0 = 24$$
 This is a false statement.

The variables are eliminated and you are left with a false statement regardless of the values of x = dy. This tells you that the system has no solution.

EXAMPLE 2

A linear system with infinitely many solutions

Show that the linear system has infinitely many solutions.

$$y = \frac{2}{3}x + 5$$

$$-2x + 3y = 15$$

Solution

Method 1 Graphing

Graph the linear system.

The equations represent the same line, so any point on the line is a solution. So, the linear system has infinitely many solutions.

Study Guide continued For use with pages 459-465

-15X +3(5x+2)=6

Substitution Method 2

Substitute $\frac{2}{3}x + 5$ for y in Equation 2 and solve for x.

$$-2x + 3y = 15$$
 Write Equation 2.

$$-2x + 3\left(\frac{2}{3}x + 5\right) = 15$$
 Substitute $\frac{2}{3}x + 5$ for y.

Substitute
$$\frac{2}{3}x + 5$$
 for y.

$$-2x + 2x + 15 = 15$$

Distributive property

$$15 = 15$$

15 = 15 Simplify.

The variables are eliminated and you are left with a statement that is true regardless of the values of x and y. This tells you the system has infinitely many solutions.

Exercises for Examples 1 and 2

Tell whether the linear system has no solution or infinitely many solutions.

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} 1 \\ \end{array} \\ \begin{array}{c} -15x + 3y = 6 \end{array} \end{array}$$

(2.)
$$-4x + y = 5 \Rightarrow 4 = 4x + 5$$

 $y = 4x + 3$

infinitely many Identify the number of solutions no solution

EXAMPLE 3

Without solving the linear system, tell whether the linear system has one solution, no solution, or infinitely many solutions.

a. 7x - 2y = 9

Equation 1

b. 3x + y = -10

Equation 1

$$7x - 2y = -1$$

Equation 2

-6x - 2y = 20

Equation 2

a. $y = \frac{7}{2}x - \frac{9}{2}$

Write Equation 1 in slope-intercept form.

$$y = \frac{7}{2}x + \frac{1}{2}$$

Write Equation 2 in slope-intercept form.

Because the lines have the same slope but different y-intercepts, the system has no solution.

b.
$$y = -3x - 10$$

Write Equation 1 in slope-intercept form.

$$y = -3x - 10$$

Exercises for Example 3

Write Equation 2 in slope intercept form.

The lines have the same slope and y-interest, so the system has infinitely many solutions.

one solution, no solution, or infinitely many solutions. 3) x - 3y = 7

$$4x = 12y + 28$$

3x + 2y = 14The solution

Without solving the linear system, tell whether the linear system has

7.6 Study Guide

GOAL Solve systems of linear inequalities in two variables.

Vocabulary

A system of linear inequalities in two variables, or simply a system of inequalities, consists of two or more linear inequalities in the same variables.

A solution of a system of linear inequalities is an ordered pair that is a solution of each inequality in the system.

The graph of a system of linear inequalities is the graph of all solutions of the system.

EXAMPLE 1

Graph a system of two linear inequalities

Graph the system of inequalities.

$$y < \frac{1}{2}x + 2$$
 Inequality 1

$$y \ge -2x + 5$$
 Inequality 2

Solution

Graph both inequalities in the same coordinate plane. The graph of the system is the intersection of the two half-planes, which is shown as the shaded region.

CHECK Choose a point in the shaded region, such as (2, 2). To check this solution, substitute 2 for x and 2 for y into each inequality.

Inequality 1

$$y < \frac{1}{2}x + 2$$

$$2^{\frac{3}{2}}(2) + 2$$

Inequality 2

$$y \ge -2x + 5$$

$$2 \stackrel{?}{\geq} -2(2) + 5$$

EXAMPLE 2

Graph a system of three linear inequalities

Graph the system of inequalities.

Inequality 1

Inequality 2.

$$y \ge -2x + 2$$

Inequality 3

Solution

Graph all three inequalities in the same coordinate plane. The graph of the system is the triangular region shown.

Copyright © by McDougal Littell, a division of Houghton Mifflin Company.

	**
Name	
I Vallic	

(1)

Study Guide continued For use with pages 466–472

Exercises for Examples 1 and 2

Graph the system of linear inequalities.

$$y > 3x - 7$$

$$y \le \frac{2}{3}x + 1$$

$$\begin{array}{l}
\textbf{(2.)} \ x > -2 \\
y > -3 \\
y \le \frac{3}{5}x + 2
\end{array}$$

$$\begin{array}{c}
3. \quad y > 2 \\
y < 8 \\
y \ge 4x - 1
\end{array}$$

EXAMPLE 3

Write a system of linear inequalities

Write a system of inequalities for the shaded region.

Solution

Inequality 1 One boundary for the shaded region has a slope of -4 and a y-intercept of 5. So, its equation is y = -4x + 5. Because the shaded region is below the solid line, the inequality is $y \le -4x + 5$.

Inequality 2 Another boundary line for the shaded region has a slope of $\frac{3}{5}$ and a printercept of -2. So, its equation is $y = \frac{3}{5}x - 2$. Because the shaded region is above the dashed line, the inequality is $y > \frac{3}{5}x - 2$.

The system of inequalities for the shaded region is: $y > \frac{3}{5}x - 2$

Inequality 1

 $y \le -4x + 5$ Inequality 2

Exercises for Example 3

Write a system of inequalities that defines the shaded region.

Copyright © by McDougal Littell, a division of Hough

