Stretch & Shift

Part 1 - No Calculator

Graph the function. Show the transformation of 3 points. State the domain and range. Be sure to draw in any asymptotes.

1.
$$f(x) = 4\left(\frac{1}{2}\right)^{x+3} - 2$$
 left 3, down 2

Parent	Stretch & Shift
(0.4)	(-3, 2)
(1,2)	(-2,0)
(-1.8)	(4.6)

2. $y = \log_4(x+2) - 1$

Parent

Simplify each expression. 3. $\frac{5e^{2}(-2e^{-7})}{4e^{3}}$ $\frac{5 \cdot -\lambda e}{4e^{3}} = \frac{-10e^{2}}{4e^{10}}$ $either -5e^{-8} = \frac{-5}{\lambda e^{2}}$

Write each equation in exponential form.

5.
$$\log_5 10 = x$$
 $5^{10} = 10$

Evaluate each logarithm.

7.
$$\log_4 64 = x$$
 $4^x = 64$
 $4^x = 4^3$
 $x = 3$

4.
$$(5e^{4x})^{-3}$$
 $5^{-3}e^{-1\lambda x} = \frac{1}{125}e^{-1\lambda x}$ or $\frac{1}{125}e^{12\lambda x}$

6.
$$\ln x = 12$$

8.
$$\log_3\left(\frac{1}{81}\right) = X$$

$$3^{\frac{1}{81}} = 3^{\frac{1}{4}}$$

$$3^{\frac{1}{81}} = 3^{\frac{1}{4}}$$

9. Condense into a single logarithm. Then simplify fully.

5
$$\log_4 2 + 3\log_4 x - 2\log_4 3 - \log_4 y$$
 $\log_4 x^2 + \log_4 x^3 - \log_4 y$
 $\log_4 x^3 + \log_4 x^3 - \log_4 y$
 $\log_4 x^3 + \log_4 x^3 - \log_4 y$
 $\log_4 x^3 + \log_4 x^3 - \log_4 y$

10. Expand the logarithm and simplify.

$$\frac{\log_{3}\left(\frac{27x}{10\sqrt[4]{y}}\right)}{\log_{3}\lambda 7 + \log_{3}x - (\log_{3}10 + \log_{3}y^{4})} = either$$

$$\log_{3}\left(\frac{27x}{10\sqrt[4]{y}}\right) \log_{3}\lambda 7 + \log_{3}x - (\log_{3}10 + \log_{3}y^{4}) = either$$

Solve each equation. Show work. Check for extraneous answers.

11.
$$8^{x+2} = 16^{2x+9}$$

 $3(x+3) = 3$
 $3(x+3) = 3$
 $3x+6 = 8x+36$
 $3x-3=9$
 $3x-3=9$
 $3x-3=9$
 $3x-3=9$
 $3x-3=9$
 $3x-3=9$
 $3x-3=9$
 $3x-3=9$
 $3x-3=9$
 $3x-3=9$

Given: $\log_7 3 = a$ and $\log_7 8 = b$. Evaluate the following logs in terms of a & b.

13.
$$\log_{7}\left(\frac{64}{9}\right)$$
14. $\log_{7}72$
 $\log_{7}64 - \log_{7}9$
 $\log_{7}8^{2} - \log_{7}3^{2}$
 $\log_{7}8 + \log_{7}9$
 $\log_{7}8 + \log_{7}9$
 $\log_{7}8 + \log_{7}3^{2}$
 $\log_{7}8 + \log_{7}3^{2}$
 $\log_{7}8 + 2\log_{7}3$
 $\log_{7}8 + 2\log_{7}3$

Part 2 - Calculator allowed

decay y=a(1-r)t

- 1. You bought a new motorcycle for \$14,000 in 2012. The value decreases by 18% each year.
 - a) Write a model that gives the motorcycle's value after t years. $\gamma = 14.000(.82)^{4}$
 - b) Find the value of the car in 2016. Round to the nearest dollars 6329.70
 - c) Find the year when the value of the car will be less than \$5000.

rule. use trace or table

2. You deposit \$5,500 in an account that pays 1.75%. How much money will be in the account after 10 years based on how often the money is compounded? SHOW SET UP.

 $A=P(1+\pi)^{nt}$ a) monthly Set-up: $5500(1+\frac{.0175}{1a})^{13.10}$ a) \$6551.0\(\text{A}\) $A=Pe^{rt}$ b) continuously Set-up: $5500e^{.0175\cdot 10}$ b) \$6551.85

3. Draw the graph of $y = 2e^{x+4} + 3$ including the asymptote. State the domain and range. Name 3 points on your graph. Any rounded values should be to 3 places.

Х	у
- 9	3.014
-6	3,271
- 3	8.437
3	112.2

4. The number of salmon (in thousands) in Lake Michigan can be modeled by $P = 242e^{1.4t}$ where t is the number of years since 2007. How many salmon will likely be in Lake Michigan in 2018?

P=242e 1.4(11)

1,180,185,806,000 Now!!

5. You deposit \$4250 in an account that pays 2.25% annual interest. How long does it take the balance reach \$5000 when the interest is compounded quarterly? Show work.

Solve each equation. Check for extraneous solutions. Round the result to three decimal places if necessary. Show all work.

6.
$$6^{4x-3} = 11$$
 $\log 6^{4x-3} = \log 11$
 $4x-3 \log 6 = \log 11$
 $4x-3 = \frac{\log 11}{\log 6}$
 $4x-3 = 1.338$
 $x \approx 1.085$

8.
$$4\log_3(x-8)=16$$

 $\log_3(x-8)=4$
 $3^4=x-8$
 $81=x-8$
 $x=89$

7.
$$3e^{x+4}-7=8$$
 $e^{x+4}=5$
 $\ln e^{x+9}=\ln 5$
 $x+4 \ln e = \ln 5$
 $x = \ln 5-4$
 $x = -\lambda.391$

9.
$$\log_2 x + \log_2 (x - 2) = 3$$

$$\log_{\lambda} x(x-\lambda) = 3$$

$$\lambda^{3} = x(x-\lambda)$$

$$0 = x^{2} - \lambda x - 8$$

$$0 = (x-4)(x+\lambda)$$

$$x = 4 - \lambda x$$
extraneous