ALGEBRA II

Chapter 5 section 4

Factor and Solve Polynomial Equations

pg. 353

FOCUS:

How can you solve a higher - degree polynomial equation?
VOCAB:
Factored Completely: \qquad

Factor by Grouping: \qquad

Quadratic Form:
WARM - UP:
Multiply the polynomials

1. $(x+2)(x+3)$
2. $(2 x+1)(2 x-1)$
3. $(x-7)^{2}$
4. $3 x^{2}(x+5)$
5. The dimensions of a box are modeled by $(x+4),(x+2)$, and $(x+6)$. Write a polynomial that models the volume of the box.

NOTES:

Factor completely.
$y^{3}-4 y^{2}-12 y$
$3 x^{3}+30 x^{2}+75 x$
$5 g^{5}-80 g^{3}$

SPECIAL FACTORS PATTERNS
 SUM OF TWO CUBES

DIFFERENCE OF TWO CUBES

$$
27 x^{3}+125 \quad-2 d^{5}+250 d^{2}
$$

Factor the polynomial completely.
$27 t^{3}+45 t^{2}-3 t-5$

$$
x^{3}+7 x^{2}-9 x-63
$$

$$
10 x^{4}-10
$$

$$
3 m^{12}+54 m^{7}+51 m^{2}
$$

Find the real number solutions of the equations.
$2 x^{5}=12 x^{3}-16 x$

$$
4 x^{5}-40 x^{3}+36 x=0
$$

Let's see if you comprehended what we worked on in class...
Try

