ALGEBRA II Chapter 4 section 3 Solve x^2 + bx + c = 0 by Factoring pg. 252

FOCUS:

How can factoring be used to solve quadratic equations when a = 1?

VOCAB: Monomial:				
Binomial:				
Quadratic Equation:				
Root of an Equation:				
WARM – UP:				
Find the product.				
1. (m - 8)(m - 9)		2. (z ·	+ 6)(z - 10)	
3. (y + 20)(y - 20)		4. (d	+ 9) ²	
5. (x - 14) ²		6. A car travels at an average speed of (m + 7) miles per hour for (m + 2) hours. What distance does it travel?		
NOTES:				
Factor.				
x^2 + 14x + 48	x ² + 2x - 63		x ² - 3x - 18	x ² - 9x - 5
m ² - 121	r ² + 14r + 49		p² - 24p + 144	x ² - 9

Solve the equation.

 $x^2 - x - 42 = 0$ $z^2 - 3z = 54$ $u^2 = -9u$

You have a rectangular vegetable garden in your backyard that measures 15 feet by 10 feet. You want to double the area of the garden by adding the same distance x to the length and width of the garden. Find the value of x and the new dimensions of the garden.

Find the zeros of the function by rewriting the function in intercept form.

 $y = x^2 + 3x - 28$ $y = x^2 - 4x + 4$

Let's see if you comprehended what we worked on in class...

for homework