ALGEBRA II

Chapter 13 section 6
Apply the Law of Cosines
pg. 889
FOCUS:
In which cases can the law of cosines be used to solve a triangle?

VOCAB:

Law of Cosines: \qquad

WARM - UP:
Solve $\triangle \mathrm{ABC}$ with the given parts.

1. $A=75^{\circ}, B=82^{\circ}, C=16$
2. $B=131^{\circ}, b=52$, and $c=38$
3. Two sides of a triangular lot are each 80 feet long, and the angle between these two sides is 110°. Find the area of the lot.

NOTES:

Solve $\triangle A B C$ with...

$$
a=22 \quad b=15 \quad C=108^{\circ}
$$

$$
a=19 \quad b=26 \quad c=31
$$

The lengths of the sides of a triangular plot of land are 120 feet, 150 feet, and 175 feet. Find the largest angle of the triangle.

HERON'S AREA FORMULA

The area of the triangle with sides of length a, b, and c is

$$
\text { Area }=\sqrt{s(s-a)(s-b)(s-c)}
$$

where $s=1 / 2(a+b+c)$. The variable s is called the semiperimeter, or half - perimeter, of the triangle .

Find the area of traffic triangle with sides 750 feet, 410 feet, and 620 feet.

Let's see if you comprehended what we worked on in class...
Try

